How does a hopping kangaroo breathe?

نویسندگان

  • Mauricio J Giuliodori
  • Heidi L Lujan
  • Hussein Janbaih
  • Stephen E DiCarlo
چکیده

We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the abdominal organs "flop" within the kangaroo's body. Specifically, as the kangaroo hops upward, the abdominal organs lag behind, and the insertion of the diaphragm is pulled toward its origin, flattening the dome and increasing the vertical dimension of the thoracic cavity (the thoracic cavity and lungs enlarge). Increasing the volume of the thoracic cavity reduces alveolar pressure below atmospheric pressure (barometric pressure), and air moves into the alveoli by bulk flow. In contrast, the impact of the organs against the diaphragm at each landing causes expiration. Specifically, upon landing, the abdominal organs flop into the diaphragm, causing it to return to its dome shape and decreasing the vertical dimension of the thoracic cavity. This compresses the alveolar gas volume and elevates alveolar pressure above barometric pressure, so air is expelled. To demonstrate this phenomenon, the plunger of a syringe model of the respiratory system was inserted through a compression spring. Holding the syringe and pressing the plunger firmly against a hard surface expels air from the lungs (the balloon within the syringe deflates) and compresses the spring. This models the kangaroo landing after a hop forward. Subsequently, the compression spring provides the energy for the "kangaroo" to "hop" forward upon the release of the syringe, and air enters the lungs (the balloon within the syringe inflates). The model accurately reflects how a hopping kangaroo breathes. A model was chosen to demonstrate this phenomenon because models engage and inspire students as well as significantly enhance student understanding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bio-Inspired Hopping Kangaroo Robot with an Active Tail

Inspired by kangaroo’s locomotion, we report on developing a kangaroo-style hopping robot. Unlike bipeds, quadrupeds, or hexapods which alternate the legs for forward locomotion, the kangaroo uses both legs synchronously and generates the forward locomotion by continuous hopping behavior, and the tail actively balances the unwanted angular momentum generated by the leg motion. In this work, we ...

متن کامل

Collision-based mechanics of bipedal hopping.

The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elast...

متن کامل

Kangaroo rat locomotion: design for elastic energy storage or acceleration?

Mechanical stresses (force/cross-sectional area) acting in muscles, tendons and bones of the hindlimbs of kangaroo rats (Dipodomys spectabilis) were calculated during steady-speed hops and vertical jumps. Stresses were determined from both high-speed ciné films (light and X-ray) and force plate recordings, as well as from in vivo tendon force recordings. Stresses in each hindlimb support elemen...

متن کامل

A Modified Kangaroo Model for Long Lived Transactions over Mobile Networks

With the rapid emergence of mobile commerce, numerous issues challenging its development have come to the highlight over the past few years. Two major ones are first ,handling long lived transactions while preserving database consistency and concurrency during transactions, and second, the description of an efficient model for dealing with cell to cell “hopping” that is typical during a transac...

متن کامل

Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared.

The muscle forces and stresses occurring during normal locomotor activity in kangaroo rats are compared with the peak isometric force developed by the same muscles in situ. Two methods were used simultaneously to determine the stresses (force/cross-sectional area) acting in the ankle extensors during steady-speed hopping and during jumps when animals were startled: a direct measurement using a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in physiology education

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2010